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I SUMMIARY

'An analysis is made of the sound produced by low Hach number

turbulent flow over an asymmetrically rounded trailing edge of an

airfoil. Such airfoils are used in experimental studies of

trailing edge noise and vortex shedding phenomena, and have a

flat pressure side and a rounded, or 'beveled", suction surface

at the trailing edge, so that in the immediate vicinity of the

edge the airfoil has a wedge shaped profile. There are two

principal interaction noise sources: a lift dipole associated
with te unsteady transverse forces exerted on the airfoil, and a

thickness dipole which radiates preferentially in the plane of

the airfoil. The latter is usually negligible except possibly at

low frequencies, and at large included angles of the trailing

edge wedge. Detailed results are given for included angles of

900.and less. It is concluded that, for given turbulence

intensity, surface beveling has a significant effect on the

radiation only at sufficiently high frequencies that the trailing

edge may be regarded as a straight-sided wedge over distances of

the order of the turbulence length scale.
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1. INTRODUCTION

Sound is produced when turbulence is convected in mean flow

over the trailing edge of an airfoil [1-4]. The strength of the

radiation is governed by the relative magnitudes of the

turbulence length scale and the radius of curvature of the edge,

such that for given turbulence intensity, it attains a maximum

when the turbulence scale is large relative to the thickness of

the edge. An edge of blunted or rounded profile cannot always be

used to reduce trailing edge noise, however, because of the

tendency of the flow to separate and produce increased turbulence

levels. In addition, separation is often accompanied by the

quasi-periodic shedding of large spanwise vortices, which are

coherent over distances equal to several edge thicknesses, and

can induce harmful, large amplitude structural vibrations

together with a strong tonal component of the radiated sound

("hydrofoil singing") 15].

Blake and co-workers 15,6] have undertaken extensive

experimental investigations to clarify the role of trailing edge

geometry on singing, structural vibration and the broadband

radiated sound. Of particular interest in these studies is the

configuration depicted in Figure 1, in which the trailing edge is

asymmetrically "beveled", i.e., such that the suction side of the

airfoil is rounded at the trailing edge and intersects a plane

pressure side at a finite included angle W. Separation does not

occur provided W is less than about 300, except possibly at very

high mean flow velocities. Although the edge is sharp, it might

be expected that the intensity of the edge noise will be reduced

*compared to that produced by an edge of zero included angle,

provided the frequency is large enough that the edge may be

regarded as a straight-sided wedge of angle T over distances of
the order of the turbulence length scale (c.f., [7]).
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I In this paper a theoretical investigation is made of the

influence of asymmetric beveling on the broadband component of

the edge noise produced by turbulent boundary layer flow over the

trailing edge region. The analysis is performed for included

angles in the range 0 4IFT 900. Periodic vortex shedding will

in practice occur at the larger values of T, but this will not be

discussed explicitly. In a first approximation its influence

will be to contribute an additional tonal peak to the broadband

spectrum of the predicted radiation. The results are used to

deduce a simple formula which provides the correction due to

beveling of the trailing edge noise that would be predicted for

the ideal case of an airfoil modeled by a flat plate of

infinitesimal thickness [4].

The edge noise can be ascribed to a distribution of dipole

sources on the surface of the airfoil whose axes are in the

direction of the local normal to the surface. in the case of an

airfoil of finite thickness some of these dipoles are aligned

with the mean flow, into which direction they radiate preferen-

tially. This thickness effect is absent in the conventional
theory of trailing edge noise [4], which associates the principal

sources of sound with dipoles orientated at right angles to the -

flow, i.e., to fluctuations in the lift of the airfoil. For an

asymmetrically beveled edge it will be shown that the thickness

component of the radiation is likely to be significant only for

large values of the included angle T, and when the thickness of

the turbulent boundary layer at the trailing edge is greater than

that of the airfoil. Detailed analytical results will be worked

out for a two-dimensional airfoil of compact chord. The modifi-

VIP cations necessary for dealing with a non-compact airfoil are

briefly summarized. In both cases the Kutta condition, that the

unsteady pressure and velocity should be finite at the sharp edge

of the airfoil, is imposed.

2
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In Section 2 the aerodynamic sound problem is formulated and

solved by use of a Green's function for an airfoil of compact

chord. The analytical structure of the Green's function for

sources in the vicinity of the rounded trailing edge is

determined in Section 3. Sections 4 through 6 then treat the

particular case of turbulence noise sources in the boundary layer

on the pressure side of the airfoil. The convection of

turbulence into the trailing edge region causes additional

vorticity to be shed from the edge, the magnitude of which is

estimated in Section 5 by application of the unsteady Kutta

condition. The shed vorticity also generates sound, and formulae

for the net acoustic radiation are obtained in Section 6.

In Section 7 the general case of arbitrary turbulent flow

over the trailing edge is briefly discussed, including the

influence of separation and periodic vortex shedding, and the

modifications necessary for dealing with an airfoil of non-

compact chord.
U

SEPARATION/ •

e/..-. .N1

FIGURE 1. TURBULENT BOUNDARY LAYER FLOW OVER AN ASYMMETRICALLY
BEVELED TRAILING EDGE. SEPARATION OCCURS TYPICALLY
FOR I > 300.
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2. THE AERODYNAMIC SOUND PROBLEM

2.1 Formulation and General Solution

Consider the generation of sound by high Reynolds number,

low Hach number mean flow over the two-dimensional rigid airfoil

illustrated in Figure 2. The fluid has mean density p0 , sound

speed c, and main stream velocity U in the positive x1 -direction

of the rectangular coordinate system (x,x 2 ,x3 ), where H = U/c <<

1. The airfoil has chord 2a and, except in the vicinities of the

leading and trailing edges, uniform thickness s, and is set at

zero angle of attack to the mean flow. The ipper ("suction") and

lower ("pressure") surfaces of the airfoil are defined

respectively by

X2 V(x1) > Oi0 ~ 0
2a < < 0(2.1)

X2  -0

where the origin of coordinates is taken at 0 at the trailing

edge, and the x3-axis is directed out of the plane of the paper

in the figure.

The boundary layers on the surfaces of the airfoil are

assumed to become turbulent towards the trailing edge (and

separation may also occur), and it is required to determine the

sound produced by diffraction when the hydrodynamic turbulence

pressure field is swept past the trailing edge region by the mean

flow. The formal solution of this problem is determined by that
of the inhomogeneous wave equation

1{2/c29t2 - V2}B = Q(x,t) )
(2.2)

Q(x,t) - div(wy)

4
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provided the Hach number H is sufficiently small that convection

of sound by the mean flow can be neglected [8]. In this equation
t denotes time and B is the perturbation stagnation enthalpy

B-p/p + !(,2U2) ,(2.3)
o 2

where v is the velocity, w = curl v is the vorticity, and p the

perturbation pressure. Sound generation by the flow is
associated with those regions in which 0 * 2. It follows from
the momentum equation

is Bv/at + VB = -wv , (2. 4a)

that elsewhere in the flow we can write

B = -Bf/at, ( = O) , (2.4b)

where Vf is equal to the perturbation velocity. In particular,
' B - P/po in the acoustic far field when H << 1.

Equation (2.2) is used to express B in terms of the vortical

source 0, whose properties are assumed to be known or easily

Y determined. This can be effected by introducing a Green's func-

tion G(xZ,t,T), which is the solution of (2.2) when the right

hand side is replaced by the impulsive point source 6(X-Y)6(t-T).

It must satisfy the radiation condition of outgoing waves at

large distances and have vanishing normal derivative aG/axn on

the surface of the airfoil. Routine application of Green's

theorem [91 then yields

B f Q(y,T)G(x,yt,T)d3ydr , (2.5)

where the volume integral with respect to is taken over the

region occupied by the fluid.

od

5
I,
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" FIGURE 2. CONFIGURATION OF THE AERODYNAMIC SOUND PROBLEM.

iii In flow of very small Mach number the wavelength of the

turbulence generated sound is much greater than the chord 2a of
! the airfoil, and to simplify the present discussion this will be

assumed to be the case. Necessary modifications to deal with the
' non-compact airfoil are sketched-in in Section 7. In these

i circumstances, the radiation received at x in the acoustic far

| field is determined by the low frequency or compact form of the
' Green's function [8] given by

:3 " G'xy t

* *: G__ y;1,__ 1 8{t-r-1I__l/c} , (2.6)• , , P7--x-

r-,e where

# -= Yi + *jlY) ' i = 1,2,
FGR (2.7)In flow oy f , ym
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and *.(y) is a solution of Laplace's equation V2 . =
0, which vanishes at large distances from the airfoil, and is

such that the normal derivative BYi/aYn = 0 on the surface of the

airfoil. Accordingly, Yi(X_) may be interpreted as the velocity

potential of incompressible, irrotational flow past the airfoil

which has unit speed in the i-direction at large distances from

the airfoil. The approximation (2.6) is appropriate provided

that the principal components of the radiation arise from the

interaction of the turbulence with the airfoil, which is the case

at low Mach number [101.

2.2 The Lift and Thickness Components of the Diffraction
Radiation

Since B p/p 0 in the acoustic region, equations (2.5),

(2.6) imply that O(y,t - xY/dyP

P(xt)/p = -f lx-Y " (2.8)

To use this result to calculate the spectral characteristics of

the radiation it is convenient to introduce a Fourier integral

representation of p. The Fourier transform P(x2,k,w) of p(xt)
satisfies the following reciprocal relations

1 i(k-x-wt)
(x2,k (2) p(x,t)e - - dx dx dt

-" 3(2.9a,b)

p(xt) f - - dkdk3dw

where the wavenumber vector k = (k1 ,0,k3 ) has components k,,k 3

respectively conjugate to x1,x3.

7.9.1

Z!'Z .4
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Taking the Fourier transform of (2.8) and using the identity

eik Ix-YI -explik(x-Y) + vik)IX 2_Y21]}d2k
" y(k) (2.10)

where ko = w/c is the acoustic wavenumber (in terms of which

sound of radian frequency w has wavelength 2w/k), 
and

NY(k) = sgn(ko)k-k2l1/2 , ilk2o-k2l/ 2 according as k = k 1ko1,
we find

:px2 'k' )/po = . iK'y-k'Y+y(k)IX 2-Y 2 11d 3yd2 K ,8i2kw)p Tr-2y f) O(y 2 ,K,w)e_

21 , (2.11)

where 0 is defined in terms of Q as in (2.9). Observe that pp

Q(Y2,Kw) is well defined for arbitrary values of Y2, since

Q(y,T) B 0 within the region occupied by the airfoil.

To fix ideas, consider, without loss of generality, the

radiation into the region x2 > 0 above the airfoil. The pressure

fluctuations in the acoustic far field are determined by the

Fourier components p(x2,k,w) which lie in the acoustic domain

k < Ikol. By hypothesis koa << 1, and it therefore follows that,

for turbulence vorticity fluctuations which are confined to the

immediate neighborhood of the airfoil, the following approxi-

mation may be introduced in the integrand of (2.11):

2+ }  e-ik-l-ik1,1 -iy(k)Y 21, (2.12)

so that (2.11) may be case in the form

2
N = p (X2 ,k,,) (2.13)

8 n
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where

iei" Y(k)x2
Po(X 2 ,kw)/po = - 2y(k) f_ ( (2.14)

k e iy(k)x 2,, .k!I i(K -k!  y
pjlx= 41k1 O(Y 2 'K'k 3l 1  1 (y)e I l dy 1 dY2 dKj,

(2.15)

e e iy(k)x 2  li(k

2 2'i')/Po 4w f Q(y 2 ,KkW)Y2 (Y)e - dYldY2 dK1 "

(2.16)

The component P0 (x2 ,k,w) determines the "quadrupole"

radiation generated by the turbulent flow when the influence of

the airfoil is ignored, the intensity of which is known to be

proportional to poU3fM. The components P1,P2 represent the sound

produced by dipole sources induced on the surface of the airfoilI.

by the unsteady flow and first identified in this context by

Curle [10]. The intensity of the dipole sound varies as p0U3 r13

and must dominate the radiation field when 11 << 1. The contribu-
tion from the quadrupoles will be discarded. It will become

clear from the ensuing discussion that the radiation fields

pI(x,t), P2 (x,t) respectively correspond to dipoles whose axes
are aligned with the direction of the mean flow and with the x2-

direction normal to the flow, and that p, - 0 when the airfoil

thickness s = 0. They will henceforth be designated the

thickness and lift dipoles respectively.

9

';~ ~ ~
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rI
3* THE ACOUSTIC GREEN'S FUNCTION FOR SOURCES NEAR THE TRAILING

EDGE

To evaluate the integrals (2.15), (2.16) it is necessary to

determine #!(Y), Y2(X), whose functional forms are dependent on

the precise geometrical configuration of the airfoil. Attention

is confined to aerodynamic sources Q(y,T) near the trailing edge,

in the vicinity of which the upper surface of the airfoil is

assumed to have the following simple representation:

o(xl) = sxl/(xl-d), (x1 < 0, d << 2a) , (3.1)

so that a(x1 ) - s far upstream of the edge. As x, + 0,

0(x1 ) - -ex1 , e = s/d , (3.2)

which implies that the included angle T u £ when £ << 1.

3.1 Evaluation of Y2 (x)

In the first instance we assume c << 1, and introduce the

*expansion

Y2 (x) oY2(x) + 1Y2 (x) + ... , (3.3)

where successive terms nY2 are formally of order en. Thus oY2 is

the velocity potential of incompressible flow at unit speed in

the x2-direction when the airfoil is replaced by the flat strip

-2a < X<0, x2 - 0, and may be expressed in the form [11,

Chapter 6]

0Y2 (X) - Re{-i[(z+a) 2  a2]1/2}

~(3.4)

z W xi + ix2 .

10
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In the neighborhood of the trailing edge, where IzI - 0(d) << a,

this becomes

oY2 (x) a Re{-i(2az) 1/2) (3.5)

The leading order, finite-thickness correction is contained
In IY2 (x) of (3.3). Near the trailing edge, and to first order
in e, the rigid surface condition, aY2/aXn = 0 on the airfoil,
may therefore be taken in the form

3x 2  ( ) a- - , < 0 ,  = +0
a X T x l) axI, 2

(3.6)

= 0 , X1 < 0, x 2 = -0

Within the fluid 1Y2 (x) satisfies the two-dimensional
?. , Laplace equation

{a2 /ax2 + a2/ax}(3.7 = 0)

which may be solved by introducing the elementary solution

G (xl ) 1 Re{ln(z1 /2_z 1/2 + ln(z'/ 2 +*z 1/2 )1

0 'X2;Yl'y2 0 0 0

(3.8)

of the problem

ja 2 /3x2 + a2 /ax2}G " 6(x -y l )6(x 2 -y 2 ) (3.9a)

L
aG /ax2 -0, x I 0, x 2 to0 (3.9b)
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where zO - YI + iY2, and the asterisk denotes the complex

conjugate. Mfultiply (3.7) by G (x1,X2 ;Y11y2 ) and (3.9a) by

IY2(-x), interchange x and y, and integrate with respect to

YV'Y2 over the region exterior to the half-plane y, < 0, Y2 = 0
which is bounded by the circle : (y2 + y2) 1/2 . R >> d. Using

Green's theorem 19], this procedure enables IY2 to be expressed

in terms of line integrals over the half-plane and over . It

may be assumed that nY2(x) does not grow as rapidly as 0 Y1 (x) -

O(Rl/ 2 ) as R. -. This implies that the representation of

IY2 (x) does not involve any of the eigenfunctions of the half-

plane (which are proportional to re{-izm+i/ 2}, m ) 0, and have

vanishing normal derivative on xI < 0, x2 = 0), and that the

contribution from I is therefore null. We then find that IY2
is given by the particular integral

IY2 (x) = 0 a y a a (y1) Y-2 (y1,+0) G (xl,x 2 ;yl,+0)dy1

(3.10)

This integral is evaluated by making use of (3.1), (3.5),

following which one concludes that, near the trailing edge of the

airfoil,

Y(x 0Y (x) + 1 Y (x~) (.1

= (2ad)/2ReIw2 (0), (3.11)

where,

1/2 1/2 1)

S/2 ic F ln¢ _ (C -1)
(3.12)

- z/d - (X1 + ix 2 )/d

12 b

~ ~ ~ ~ '~- - '- .*% -'.
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When c is small this result provides a uniformly valid

approximation to Y2(x) except possibly in the immediate vicinity

of the trailing edge. At such points (c - 0) it is more

appropriate to adopt the renormalized representation:

W20) - -ic 1/21 + (c/4w)lnc + ic/4} - e/4

a (l+e/?v)/2ei6/4_ /4. (3.13)

The adequacy of the above approximations can be assessed by

recalling that Y2 (x) is the velocity potential of a hypothetical

flow past the airfoil in the x2-direction. It follows that

Im{w 2 ()1 should be constant on the airfoil. Clearly, (3.12),

(3.13) both imply that Im{w 2 (0)1 = 0 on x, < 0, x2 = -0.

Furthermore, from (3.13), Im{w 2 (;) = 0 also for arg C = -

when 1i < < 1, where

T - c/(l + 6/21) , (3.14)

i.e., to leading order in c, Im{w 2 (0)} - 0 on x2 = O(x I ) in the

neighborhood of the sharp trailing edge. For larger values of

JCJ the actual airfoil profile (3.1) should coincide with that

defined by (3.12) in Im(C) > 0. The extent of the agreement for

e - s/d - v/6 (T " 300) is illustrated in Figure 3. The solid

S curve is the profile Im~w2 (c)} - 0 computed from the approxima-
tion (3.12). The dotted curve depicts the profile (3.1) of the

trailing edge of the airfoil.

Actually, it will be argued below that (3.12), (3.13) give a

suitable first approximation when e is as large as 2:/3 (T =

90'), when they respectively become "outer" and "inner" repre-

sentations of Y2 (x). Of course, the magnitude of the included

angle T must then be taken to be defined by (3.14), and the shape

13

.~ ~-VV*.f~~*-~ ~ 5%5,
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of the upper surface of the airfoil near the trailing edge is

defined by Imfw2 (C)) - 0. In all such cases the upper surface has

a smooth profile similar to the solid curve in Figure 3, which

tends asymptotically to x2 - s as x, . --.

3.2 Evaluation of _ox)

In this case

Y1 (x) = x1 + 4 ,

(3.15)
#1(x) o 0 #(x) + 1#1(x) +

When 6 = 0 the airfoil degenerates into a plate of zero

thickness, and one deduces that 0 - 0. The leading order,

effect of finite thickness is contained in l1*(x), whose

functional form can be determined by the procedure described

above. However, since 0YI(x) = xj, it is necessary to admit the

possibility that the representation of 101(X) includes the

eigenfunction C.Re(-izl/2 ), C = constant, in addition to a

5 particular integral of the form (3.10) (in which oY2/aYl is

replaced by aoY1 /8y, = 1). The value of C is chosen to ensure

that Y1 (x) has the correct behavior as z + 0, i.e., to ensure

that YI(x) describes the potential of flow past a wedge of

included angle T. In this way one obtains

.yx 1_  X + #1(x)_

" d Re{wl()} , (3.16)

where

W ie C c lnc + iCC3/2 (3.17)

"2(;-l) 2(- )

: ,4
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0.25

% 0
40 30 20 10 0

FIGURE 3. PROFILES OF THE UPPER SURFACE OF THE TRAILING EDGE WHEN 4%

C = 9/6. * :PROFILE DEFINED BY (3.1);
: PROFILE DEFINED BY Izflv 2 (0) 0;----PROFILE DEFINED BY Imfvj(Q)J 0.

15
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|I
As C * 0 this reduces to

wi() - c (l+e/ 2w)eiE/ 2 . (3.18)

The dashed curve in Figure 3 illustrates (for x, < 0) the

profile of the upper surface of the airfoil, as defined by

Im{w( c)} - 0 for e - v/6. This tends asymptotically to x2 = s

as x, + -a. The differences between this and the actual profile

(3.1) are seen to be greater than for the analogous (solid) curve

for Y2 (x), although they are not large enough to materially

affect the conclusions of the present investigation. The dashed

line in the Figure which approaches the edge from x, > 0, is the

dividing streamline of the potential YI(x), and makes an angle

-i/2 with the positive xl-axis at the stagnation point x, = x2 =

0.

As before, when E is not small, equations (3.16), (3.17)

will be interpreted as outer and inner approximations to YI(W)

for an airfoil whose actual profile is defined by Im{wi()1 = 0

rather than by (3.1).

' 5'
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4. NOISE PRODUCED BY TURBULENCE ON THE PRESSURE SIDE OF THEAIRFOIL

Consider first the sound produced by boundary layer

turbulence convecting past the trailing edge in the region X2 < 0

below the airfoil. The integrations with respect to y, in

(2.15), (2.16) may then be assumed to extend over the interval

(-,-) without encountering the airfoil.

4.1 The Lift Dipole p2 (xt)

Using (3.11) in (2.16) we have

2 (2ad) 1/ 2 eiY (k)X2
P2 (X2 4kw)/p =47 f O(y 2 ,K 1 ,k 3 1 w)Re{w2 (o)}

x e i(K-ky dy 1dy 2 dK1

(4.1)

where o= (Y1 + iY2 )/d. To evaluate the yl-integral, we set

,(Q) = Rejw 2 (0)}eiaYl dy,

= + , = -k, (4.2)
2

where,
.rn

f w2 ( )eicY dy , (4.3)

and 'c.c" denotes *complex conjugate." I'(a) can be written as

the following function theoretic contour integral:
S.=

.+iy 2 /d idC1
19(a) -de f w2 (C )e o dC (4.4)

-u+iy 2/d 0 0

17
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the path of integration in the C -plane being parallel to the
real axis at distance Y2/d (<0).

According to equation (3.12) the integral (4.4) is formally

divergent. Since, however, the aerodynamic source Q(y,r) may be

assumed to vanish as Yi , ±-, the value of the divergent integral

may be interpreted as a generalized function, as in classical

thin airfoil theory [12]. To do this the integral is expressed

as the derivative with respect to a of a convergent integral, as

follows:

iad;
e+iy 2 /d w2 ( O)e a odI'() = -ie a y 2  f (4.5)

,, a -'+i/d .

The integrand is regular in the ;o-plane, except for the branch

point at ;o = 0, and w2(o) 0 s. Thus I(a) _ 0
for a < 0 (and Y2 < 0). For a > 0 the integration contour may be

deformed onto a branch-cut extending from the origin to +i-, and

I'(a) can then be re-expressed in the form
d dis) 1/2 eCY2F2 (ad)

( d)3/2
(ad) 3 1

(4.6)

F2 (x) = 1 - cxf(x) ,

where

1 fn f 1/2u e 1/2nu e-
f(x) 1 1~ + 2in)d~ -u f dx

" 4,1/2 1 M ' +ix dU--. f +ix d

(4.7)

r: which is readily evaluated numerically (or in terms of tabulated

functions for the first of the integrals on the right hand side;

18
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see [13]). When I'(-a) is evaluated in the same way, we find

from (4.2)

d(ilr)l/2eIGIY2
I(a) 2(d) 3/ 2  sgn(a)F 2 (ad) • (4.8)

In obtaining this result use has been made of the *outer"

representation (3.12) of w2 (). It is evident from the

discussion of Section 3 that this is likely to be an adequate

approximation only if the principal contributions to the branch-

cut integrals in (4.7) are not from the neighborhood of the

branch point V = 0, where the functional form of w2 () is

determined by the geometry of airfoil at the sharp trailing edge.

Thus (4.6) must cease to be valid when x = ad + -, in which case

xf(x) becomes logarithmically large. In that limit (4.6) implies

that, provided e * 0,

F2 x) 1 + i + 2ilnx + 4-. 2 - ye - 1n4 , (4.9)

where ye a 0.577216..., is Euler's constant ([131, page 255).

Now the correct behavior of F2 (x) as x + -, which takes

proper account of the behavior of w2 () at the sharp edge of the

airfoil, must be given by use of the asymptotic, "inner" approxi-

mation (3.13) in the integrand of (4.5), which yielas

F2 (x) - (2/w 1/2 )(l+ic/8)r(3/2+e/4)x - / 4w (4.10)

in terms of the gamma function r(z) [13]. This reduces to (4.9)

when expanded to first order in t, and use is made of formulae

given in Section 6.3.4 of reference [13]. For small values of c,

(4.9), (4.10) are both well approximated in their respective

regions of validity byL

oit 21lnx CF2 (X) - (1 + W + (2-ye- ln4'1. (4.11)

19
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It follows that a uniformly valid approximation, which gives
the correct behavior of F2 (x) for small and large values of x is

obtained by replacing l-exf(x) in (4.6) by exp {-cxf(x)J. With

this renormalization, equation (4.8) becomes

1/2d(wi) z 2 (ad)e1CdY2

I(3) - (4.12)
2(ad)3 /2

where

Z2 (X) = sgn(x)F 2 (x) = sgn(x)exp{-Exf(x)} , (4.13)

so that Z2 (x) = x - z / 4 v as x + -. This is actually expected to be

a good approximation for c < 2w/3 (W < 90*). Indeed, the

exponent in (4.13) is then small except when x is large, and in

that case the asymptotic result (4.10) is still well approximated
by (4.11) for such values of c, since r(z) is stationary in the

neighborhood of z = 3/2.

Using this representation for I(a) in (4.1), and taking the
inverse Fourier transform, we obtain for the lift-dipole

component of the acoustic pressure

1 (ai/2w)1/2 Q(y2 ,l,k 3,W)z { (KI-kj)d}
= (ai/t/2or4 )3/2

(K 1 -k 1 )

x expi[k._ + y(k)X2-wt] + IK1 -kjjy 2}d2kdwdKjdy 2,

x + y 2
< 0. (4.14)

When e - 0, Z2 (x) = sgn(x), and this expression reduces to that

for a flat-plate airfoil of chord 2a.

20 1'I',
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It has already been noted (in Section 2) that, in the

acoustic far field, the dominant contribution to the integral

with respect to k in (4.14) is from the acoustic region k < ko],

whereas, as will be seen below, the important values of K, in the

integrand are associated with the hydrodynamic region K, - w/U >>

ko of the boundary layer wall pressure fluctuations. Accordingly

(4.14) may be further simplified to the form

(ai/2w) f Q(y2,Kjk 3 1,)Z2 f{Kd}- "l)/ 4 3/x 2

K13/

expli[k.x +(k)x 2  Wnt] + JKld~kddy2 ,

X2 + + -, Y2 <  0 (4.14)

4.2 The Thickness Dipole pl(x,t)

A similar analysis can be given for the simplification of the

integral representation (2.15) of pI(x 2 ,k,w) by making use of the
formulae (3.17), (3.18) for wl(C). In this case one finds

= E(id/v) 1/2 k1 0(y 2 'Kl'k 3 ,w)Z1 (Kld)

y (k)K3/2

x exp{i[k.x + -y(k)x2 -wt] + Kliy 2}d2 kdwdKldy2 ,

X2 * + , 2 < 0 , (4.15)

where

2ix - 1/2~i
21 e/,(x) =-sgn(x) 1 - 7 +--- du.

-(x/Ti) 1/2 Ue du (4.16)

;5#0 " + ix,

and Z(X) -1 - / 2 as x -

:. 21
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S. THE KUTTA CONDITION

The aeroacoustic source term O(x,t) on the right of equation

(2.2) consists of two distinct and identifiable components. The

first involves vorticity w in the boundary layer which is convected

into the trailing edge region from upstream. The second is

associated with vorticity which is generated at the surface of the

airfoil in the vicinity of the edge (and subsequently shed into the

wake) in response to the unsteady forcing by the incident boundary

layer disturbances. In this section the properties of the shed

vorticity will be estimated on the basis of high Reynolds number,

unsteady airfoil theory, i.e., the Kutta condition will be imposed,

which requires that the motion induced by the shed vorticity at the

trailing edge is such as to remove the singularities in pressure

and velocity that would otherwise be predicted to occur there in

ideal, inviscid flow. This procedure is believed to be valid

provided the reduced frequency ws/U is not too large [14].

5.1 The Green's Function G(x, Lt,r) for x Near the Trailing Edge

3 Consider first the motion induced near the trailing edge by

a single Fourier component q(x2,K,k 31w)e i ( '-
1 t), say, of the

boundary layer disturbances in x2 < 0 which are incident on the

edge from upstream. When the ultimate objective is the

determination of the acoustic radiation by use of the dipole

formulae (4.14), (4.15), attention may be confined to wavenumbers

K - (K1 ,0,k3 ), where k3 lies in the acoustic domain Jk31 < Ik0 I.
In that case the flow produced near the edge by this source is

essentially two-dimensional, inasmuch as the length scale of

variation in the spanwise direction is large relative to all

other scales of the flow. In order to calculate the velocity

near the edge from the integral representation (2.5) of the

stagnation enthalpy, it is evidently sufficient to determine the

functional form of the Green's function from the reduced equation

22
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{a 2 /ax2 + a2/3x2IG - -6(x-y)6(t-T) , (5.1)

Pwherein a2 G/c2 at2 is neglected because retarded time effects are

negligible in the vicinity of the edge, i.e., the flow may be

taken to be locally incompressible and two-dimensional.

To solve (5.1), set

G(x,y,t,T) = -{Go(XII X 2 ;y l ,y2 )+GI(XIX2;YlY2)+.--6(x3-y3 )6(t-T),

(5.2)
where Go is the potential of incompressible flow produced by the

line source 6(xl-yl)6(x 2 -Y2 ) in the presence of the rigid half-

: :. plane x, < 0, x2 = 0 (as defined by (3.8)), and G, is an O(c)

correction which accounts for the leading order effects of finite

thickness of the airfoil. G, satisfies the homogeneous Laplace

equation and is subject to a boundary condition of the form (3.6),

namely

- = a (x1 ) OX
1 < 0 X2 = +0 1

X2  aX1  a(5.3

= 0 1 x1 < 0, x2 = -0 (

It follows by the method of Section 3, equation (3.10), that

G Ix 1 ,x2 ;yl'y 2 )
t'-"

ic rrl+ 1 d, Re f- +
8W2 1/ 2+i 1/2 ,_i 1/2 1/2_ 1/2'

0-. [x o 0 C 0 ( ,+ 1 )( C -i

,

) (5.4)

23
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where C - (xl+ix2)/d, Co - (Yl+iy2)/d. This integral is readily

evaluated for arbitrary values of C, but to apply the Kutta
condition only the behavior near the trailing edge c 0 is

required. Expanding (5.4) for small values of C, and combining the

result with'the corresponding expansion of Go , one finds for

c/€o << 1,

Gxy ) -T 6(x 3 -y 3 )6(t-r)

1/2 _

x Re C 1/20 1 0 + inc + (c)

[C It  + i C6t(1/2 1 1 ic(C 1) { +lnC +

0 C0 0

1C/2 1+ 4(1/1) + T n + W-1) + i) j
1(5.5)

This "outer" approximation can be renormalized (as in Section 3) in

the limit as C + 0, yielding

G(x,y,t,-r) - (x 3 -y 3 )(t-T)

x Jx2 + x2I(1+£/ 2 7r)/ 4sin{l 1 + L-) + E]Pe{w ¢o )( C (5.6)

Al where,

) C i 0(1/_ 2 -1) e inCo 0w C / 4(Co-l) 477 C 0-1)'

00

. L. (5.7)

= arg(C) •

Observe that BG/3C - 0 for [ = -w,w(I-c/2w)/(l+c/2w), i.e., on the

faces of the wedge shaped tip of the airfoil, as required.

24



Report No. 6715 BBN Laboratories Incorporated

5.2 Induced Flow Near the Edge

Inserting (5.6) into (2.5), with O(y,r) replaced by

i(K-yw.
Q(y2 #K2 'k3 w)e

integrating over all values of KI, and denoting by Bq the

corresponding unsteady stagnation enthalpy, we find that near the

edge

Bq 1 2x2 + x21 (I+/ 2 w)/ 4sin{.(l +-2-) + -}ei (k3x3t)

x f q(y2 ,Kl1k3 ,)Re{w (C )}e iKldy1 dy2dK1 . (5.8)

As previously, the integration with respect to yl can be simplified

by transformation into a contour integral in the Co-plane, leading

to

B z. 1 IX2+X2fl1'/ 2 w' 4s in.~ (1 + ±-) + .-.e(k3X3-wt)

(f (d)q(y 2,K,,k ,w)eI1I'dy~dK1 , (y2 < 0),

(5.9)

where,

r -(x) = gn(x){,/ix 2 { -i--1 + 2i lnx+Te+ln4] + if(x)

5.-.

(5.10)

and f(x) is defined as in (4.7).
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For fixed c, the term in the brace brackets of (5.10) becomes

unbounded as x = Kid w -. This occurs because the integral with

respect to Yi is then dominated by the behavior of w (Co ) near the

sharp edge Co - 0 of the airfoil. The correct behavior is obtained

by use of an inner" representation of w (o ) as a function of "

By this means one finds, by the procedure justified in Section 3,

that the following exponential renormalization of 2(x) is valid for

all values of x
()=-(w/i) 1/2sgn(x) c ic

37(x) = _(- /)/2 •n_ . exp{-(y +ln4) + -[f(x)-i/4]} . (5.11)
(1-c/2w)/2 47r e 2

Equations (5.9), (5.11) determine the fluid motion near the

sharp trailing edge of the airfoil. Vorticity in x2 < 0 produces a

disturbance Bq = -8aq/at, say, in x2 > 0, where fq is a velocity

potential. It follows from (5.9) that the corresponding velocity

becomes singular like Ix +xj(lc/2 w)/4 at the edge.

5.3 The Shed Vorticity

According to the unsteady Kutta condition sufficient vorticity

*is in practice shed from the edge to remove this singular behavior.

It will be assumed that the shed vorticity convects downstream in

the plane X2 = 0 at velocity US , say. Let q s(X2,K,) =

(K1 ,0,k3 ), denote the Fourier transform of the equivalent

hydroacoustic source due to the shed vorticity, so that, by the .

second of equations (2.2), we can write

X, 9(X 2 K,w) f -- N(k3 ,W)8(X2 )6(K1-w/U 5 ) } (5.12)

where N(k w,) is to be determined.

Observe that, since 8G/ay 2 - 0 (i.e., Re{awg/ay21 - 0) on the
L pressure side y, < 0, Y2 - -0 of the airfoil, the integral (2.5)

which defines the stagnation enthalpy field B., say, produced by
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the shed vorticity, may be assumed to extend over the range

< Yi < +n. It follows that the behavior of B. near the edge is

given by an integral of the form (5.9) for each k3,w, and,

therefore, that the Kutta condition will be fulfilled provided

j {q(y 2 ,K,k 3 ,uw) + q (y 2 ,Kj,k 3,w)) ?(Kld)eJK1IY2dy 2dKj = 0.

(5.13)

On introducing (5.12), this implies that

= ~ 2 Kl,k 9Ka)yd K(k,/Usl ( q(Y2 ' ) (Kd)elK1IY2dy 2 dK"

(5.14)

Hence, in using (4.14), (4.15) to calculate the lift and

thickness dipole radiation fields produced by turbulent flow past

the trailing edge on the pressure side of the airfoil, one must

take

6(X2 ,Klk 3,W)= q(X2 ,Kl1k3,w) +

j 6(x2 )6(K1-W/Us) a

ax- JK J (Kjd) f q(Y ,K,k3,=) 7(Pcd)e1 y dyjd=:

'U' (5. 15)

where q(x2 ,K,w) is the Fourier transform of the hydroacoustic

sources in the boundary layer (defined as in (2.2)) which are

convected into the trailing edge region from upstream, and the

second term on the right hand side accounts for the influence of

the shed vorticity.
.YI
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6. THE RADIATED SOUND

6.1 The Acoustic Pressure Spectra

Using the representation (5.15) in equation (4.14) for the

lift dipole, we obtain

p2 (x,t)/p 
(ai/2w)

1/2  q(y 2 ,K,k 3 w)Z 2{Kd)

-- 0 4 K _3/2

K1

x - Z2 (Kid) (,d/U )S) S

x expli[k.x d (k)x2 - wt] + IKi.y 2 ld2kdwdKjdy 2 ,

X2 + + "I Y2 < 0 , (6.1)

where the second term in the brace brackets of the integrand

corresponds to the sound produced by the shed vorticity, and should

be omitted when the Kutta condition is not applied.

The frequency spectrum #2 (w), say, of the acoustic pressure

associated with turbulent boundary layer flow of finite spanwise

extent I (which may be assumed to straddle the origin of

coordinates, as in Figure 4) may now be determined. At the far

field point x, 02 (w) satisfies

<pilxt)> = f *2 (w)dw ,

where the angle brackets < > denote an ensemble average. It will

be assumed that the density q(xt) of the hydroacoustic sources in

x2 < 0 which are convected into the trailing edge region from

upstream is a stationary random function of x1,x3 , and t, such that

<q(x 2 ,K,w)q (xJ,K',w')>- S(x 2,X,;K,w)8(K-K')8(w-w') , (6.3)

'M 28
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where S(x2 ,xj;K,w) is the cross-spectral density of the hydro-

acoustic sources [15]. This hypothesis is consistent with the

assumption that the boundary layer sources are convected past the

trailing edge in an essentially frozen configuration. The

integration in (6.1) with respect to kl,k 3 may be evaluated

asymptotically as i + a (e.g., by the method of stationary

phase), following which one finds

atk2 cos 2 e
= "0 S(Y 2 'y;Kksinesin*,w)exp{IKIj(y 2 +y)1

161X12 PI

x - K)-3/2 2 (wd/U) (Kd) 2 Z2 (K 1  dKdY2dY,
w(6.4)

where (lxl,e,*) are the spherical polar coordinates of the far

field observer position x illustrated in Figure 4. The linear

dependence of this result on cos 28 is characteristic of the

radiation field of a dipole orientated in the x2-direction.

A similar calculation starting from equation (4.15) for the

thickness dipole yields the following expression for the corres-

ponding frequency spectrum 01 (w):

~tdc22

321x1 f 21 ;K,,ksinesinfw)expfjK1 PI

.K" z 3/2 Z,(d/u ) _7(K d) 2 IZ,(Kld)j2

.;- 1 z(Kd) 3(wd/U s ) 1K Y2 dK dy 2dy2 '

(6.5)

where * is the angle between the observer direction x and the
positive xl-axis.
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*Radiation
Direction '

FIGURE 4. COORDINATES DEFINING THE RADIATION INTO THE FAR FIELD.

Note that, the radiation fields pl(x,t), P2 (-X,t) are not

statistically independent, and the spectrum of the net field

pl+P2 is not, therefore, equal to 01(w) + 02(w). However, it will

be seen below that the thickness dipole is generally negligible

except possibly at 8 a w/2, i.e., in planes parallel to the mean

flow, where 02 is null.

30
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S
6.2 The Boundary Layer Turbulence

At distances far upstream of the trailing edge of the airfoil,

the surface pressure fluctuations can be expressed simply in terms

of the hydroacoustic source density q(x,t). If P0 (K,w) denotes the

wavenumber-frequency spectrum of the surface pressures [16], then

for the plane surface x 2 = -0, Po(K,w) and S(x2,x1;K,w) are found

to be related by

P2 (l - U K/W)2  0

P (K,w) y(K)1 2  f S(y2'y2';Kw)

x exp{-i[y(K)y 2 - y*(K)yfl}dy 2dy , (6.6)

where Uo is the mean flow speed (in the xl-direction) just outside

the viscous sublayer (see, e.g., [4]). In this result the cross-

spectrum S(Y2 ,yJ,K,w) may be identified with that appearing in the

representations (6.4), (6.5) of the acoustic spectra provided the 1%

boundary layer turbulence convects past the trailing in an

essentially frozen pattern. This will be assumed to be the case.

Now it is known [161 that P (K,w) is sharply peaked in the
0-neighborhood of the "convective ridge" centered on K1 = w/Uc , K3 =

- 0, where Uc is a convection velocity which is typically equal to

70% of the main stream velocity U, and varies slowly with •

frequency. In these circumstances (6.6) implies that

-:'.. f f S(y2 ,yi;Kl,k sinesin , leIKlI(Ya+Y2)dy 2dy2

I ,k sinsin#,w) o ) i:!:',,IK, O(KO w)'
4 = 2( - U K /W)2 = 2(1 -U K / )2 ' (6.7)

p 2 (l- UK/w- U.K,/w) 2

05 00

131

. ,"2".', ; ; .. , . . *" @S,- •,. - . . . .... .- ,- .•... .,. ,-"-.", , .".. ", ",'g.. " -".' , , ., .. ".



Report No. 6715 BBN Laboratories Incorporated

and equation (6.4) for #2(w) becomes:

alk2 cos 2e - P (K,0,W)

2 161x12  (1 - UoK,/W)2

K 1  3/2 Z 2 (d/U s) 37(K Id) 2 1Z2(Kld)12

w/-U Z2 (Kld) 7(wd/Us) - -- - dK1  . (6.8)

22 and Yare slowly varying functions of their arguments, so that

the value of this integral may be approximated by setting K1 = w/Uc
in all terms of the integrand except Po(Ki,0,,)/IKI, leading to

alk 2cos 28

#2_ 0 exp{-2c(wd/U )f(wd/U ))I
16 2 c c

: -

x l_(Us/Uc ) (l+c/ 4 7)exp{lcwd/Uc+i/2]f(wd/U c ) - E[wd/U s+i/2]f(wd/U s  2

(1 - Uo/U)

' -P (Kj FoF)
, f JKIJ .- dKI(6.9)

where use has been made of (4.7), (4.13), and (5.11).

The value of the remaining integral in this result may be

estimated by making use of Chase's 1161 empirical formula for

_ 0o(K,w), which is valid in the vicinity of the convective domain:

C P2 v 3 K2

m o" "P (K '') ,/ ( 6.10)
P 0 ' Ko , [(-.-u )2/(hv,)2 + K2+(b6)-] ?5/2

c I IJ

where v* is the friction velocity, 8 the boundary layer thick-

ness, and the remaining parameters are given by
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b = 0.75, Cm = 0.1553, h = 3 . (6.11)

p Using this in (6.9), we finally obtain

C(C h/1)(u /U)cos2 e[l+(hv*/U l/ 1 /U )3

I p2v4,6(af/Ixj2 ) [(w6/U )2 + (1+(hv,/U )2 )/b2 ]2
0 c C

xexp{-2c(wd/Uc )f(wd/Uc )1

l-(Us/U c ) 
(l+c/ 47)exp{dwd/Uc+i/2]f(wd/Uc ) - c[wd/Us+i/2]f(wd/Us )}

I (I - U o/U c

(6.12)

When c = 0 this result reduces to the spectrum of the lift dipole

when the airfoil has zero thickness.

An analogous calculation leads to the following explicit

representation of the spectrum (6.5) of the thickness dipole:

C2 I (,.,) C3(C h/24)(s/a)(U /U)cos2[l+(hv ,/U)2]i(W6/U )3
m c c c

P2V4Ud(at/1Xj2) [(w6/U )2 + (1 + (hv /UJ )2)/b2]2
o c c

I Z (,wd/U c)12 1+ 4I exp{ ( ic12)[ f wd/U c )-f¢wd/Us S)1 2 .::.
l Z -(Us/Uc+/4 "'""H'v

(1-Uo/Uc I Us c Z1(wd/U c)/Zl(wd/U S,

(6.13)

In applying these formulae the value of e is determined in

terms of the included T of the trailing edge by the following

form of (3.14):

S33
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S= I(l-'2 ) (6.14)

6.3 Numerical Results

These formulae will now be used to illustrate the predicted

influence of trailing edge beveling on the radiated sound.

Consider first the acoustic pressure spectrum of the lift dipole,

given by (6.12). It is necessary to specify the convection

velocities Uo, Us, Uc . In applications it is often the

relatively high frequency range w6/U >> 1 that is of interest.

In a first approximation the shed vorticity might then be

expected to convect downstream at a velocity equal to the mean

velocity in the boundary layer just outside the viscous sublayer

(m 0.7v,), where vorticity generation occurs. This hypothesis

will be adopted in the absence of reliable experimental data to

the contrary. Since, typically, v* 0.04U, we shall take Us =

Uo a 7v* a 0.25U (see [17], page 629). The convection velocity

of disturbances in the main body of the boundary layer will be

taken to be given by Uc = 0.7U.

With these qualifications, the predicted variations of the
lift dipole spectrum 10.logl 0{C2.(w)/p2v4U6(a1fxl

2 )cos2 e}(dB)

with frequency wS/U, for turbulence on the pressure side of the

airfoil, are depicted in Figures 5(a), (b) respectively for 6/s =

0.1, 1. The different curves in these figures are for trailing
edges of included angles = 0*, 30 *, 60*, and 90* . When 8 = 0

the airfoil is flat. Increasing the value of W reduces the

intensity of the radiation, especially at the higher frequencies.

In the latter case, the flow noise diffraction mechanism is

dominated by the geometry of the tip of the airfoil. When wS/U is

small predictions for I * 0 do not depart significantly from the

case of a flat airfoil. It is likely, therefore, that, for

moderate values of e, the correction to the flat plate results

are given to a good approximation by replacing the terms in £ in

34 '.
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(6.12) by their respective asymptotic values as w6/U + . In

that limit (6.12) becomes

C *2(w (C h/12)(U /U)cos2e[1+(hv./U))'/ 2

P *~U6(at/IX12 ) nc

/s)/2w (6/U )3-c/2w (U/U )i+c/2w 2

c )z c . (6.15)I (W6/U ) + [l+(hv*/Uc)zj/bz 1_Us/U 0

Co,'nparisons of predictions of this formula with the results in

Figure 5 indicate that the error is less than about 0.25 dB even

for E as large as 2w/3 ( = 900) when 6/s = 0.1. When 6/s = 1,

the errors at e = 600, 90 * exceed 0.5 dB only for w6/U <

2,6 respectively. In view of this it is perhaps of interest to

note the corresponding asymptotic form of the more general

expression (6.8):

~~~alk2cos2e(C/s) / 2  
OD P (KI,0,W) I-(U K / )i/22

161X12 1,€/2,, 1 - U Kj/, d z

-(6.16)

t., The proportionality exhibited in (6.13) of the spectru. 01(wO)

of the thickness dipole on 03 indicates that the contribution to

/.the radiation fror. this source is small except possibly at the

larger values of the included angle .The ratio s/a of the

' - airfoil thickness to the semi-chord is of order 0.1 - 0.2 in
typical experimental configurations [5]. The value of Z(wd/U

I decreases rapidly with increasing frequency, and this further*reduces the significance of (ib) except when 6/s is large (i.e,

for boundary layer flows whose thickness is comparable to the

i " 35 2

airfoil .. ",0. -, .% ,. thiknsstoth semi-hr so orde.',..' r,0 .1 ,,-0.2 in ;',". , *



Report No. 6715 BBN Laboratories Incorporated

thickness of the airfoil). The solid curves in Figure 6

illustrate the variation with w6/U of

10.log1 0{c2 1 (W)/p2v.U6(a,/jxj2)cos2,} (dB)

for 6/s - 1, s/a = 0.15, T = 300, 600, 900, and when the

remaining flow parameters assume values given previously. For

comparison, the dashed curve is the = 900 lift dipole spectrum

of Figure 5(b).\ These results suggest that the thickness dipole

is negligible except, perhaps, in radiation directions parallel

to the airfoil, and when 900.

-20.0 -

"/s =0.1

m -30.0 30-

-- 60
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* .. -40.0

-0.0
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? " 1 0, ,, I U 1 0 2 1 0 3

FIGURE 5(a). THE SPECTRUMI lO.1ogjo{c 2O 2 ()/pgvU6(a./jxj2)cose}

OF THE LIFT DIPOLE FOR DIFFERENT VALUES OF THE

INCLUDED ANGLE I, AND FOR 8/s = 0.1.
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FIGURE 6. THE SPECTRUM lO.1oglo{c2ll(.)/p 2 vU6(al/1xl2)cos2*J
* OF THE THICKNESS DIPOLE RADIATION FOR DIFFERENT VALUES

OF THE INCLUDED ANGLE 1 AND FOR 6/s - 1.
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1 ..

7. DISCUSSION OF THE GENERAL CASE

7.1 Turbulence on the Suction Surface

All of the detailed predictions given in Section 6 are for

qtrailing edge noise produced by turbulent flow in the boundary
layer on the lower, *pressure" side of the airfoil. If the

included angle i does not exceed about 30* mean flow separation
from the suction surface does not occur [5]. In that case, since

the effect on the radiation of the finite included angle T is
important only at the higher frequencies, it can be shown that

the formulae of Section 6 remain valid for turbulence convecting

past the edge on the suction side of the airfoil. When separa-

tion occurs (see Figure 1), turbulent eddies in the suction

surface boundary layer which are convected into the trailing edge

region from upstream are displaced from the proximity of the

edge. It follows that, except when ws/U << 1, their near field

pressure fluctuations are exponentially small at the edge. Only

the very low frequency, incident boundary layer disturbances can

then interact effectively with the trailing edge, and produce

sound essentially as for an airfoil of zero thickness.

Truitance fluctuations within the separated region will, of

course, produce high frequency sound by interacting with the a%

edge. If, as seems likely, this turbulence is statistically

independent of the boundary layer turbulence on the pressure

side, its contribution to the spectrum of the lift dipole

radiation may be estimated from the formula

atk2 cos 2e(e/s)C/2 P (K ,,Ow) 1-(UK/w)l+c/2 20 s s I/f 1 dK

r3161x1 2  
-- I 1 lc/2w 1UK/

(7.1) ~
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provided Uo denotes the mean flow velocity at the edge of the

viscous sublayer. In this expression Ps(K1 ,O,w) denotes a local

representation of the wall pressure spectrum on the suction side

of the airfoil within the separated zone. If it is permissible

to assume that the structure of small scale turbulence eddies

does not vary significantly in the mean flow direction, the value

of Ps(K1,0,w) may be estimated from measurements of wall pressure

at distances exceeding - I/K1 upstream of the trailing edge, at

which points the influence on the hydrodynamic pressure field of

diffraction at the edge should be small (c.f., [4]). In addi-

tion, over a range of intermediate to large mean flow Reynolds

number, there will be a pronounced contribution to Ps in the

neighborhood of ws/U a 0.5, K, a w/U corresponding to surfacec
pressure fluctuations caused by large scale, quasiperiodic vortex

shedding. In this low frequency case it is necessary to set =

0 when estimating the radiation from (7.1), or make use of the

general formula (6.8).

7.2 Influence of Non-Compactness

It is of interest to note the modifications of the results

of this paper when the airfoil has non-compact chord (i.e., for

koa >> 1). Attention is confined to the analog of the lift

dipole spectrum 02 (w). The appropriate form of the Green's

function can be derived from the results of Section 3 and from

the Appendix of reference [8], following which one finds that the

principal component of the trailing edge noise is given by

Itk Isin(isin (B/2) (e/s) /
2w

#2  ( ) - 0X1

SPo(K',0,w) -(UsK I /W) +c/2w 2

.f 1+c/2w 1-UoK1/W dK1 , (7.2)
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where _c is the angle between the observer direction x and

i the x3-axis (seeFigure 7), and T - tan-l(x2/xl). Wihen e = 0,

-this expression is equivalent to that given in reference [4]

, . (equation (71) with #2 identified with Sz/2 and Po with 4nK ,

and with the neglect of finite Plach number terms) for a half-

plane of infinitesimal thickness. In particular, the specific
m~i formula (6.15), which is applicable for turbulence on the

pressure side of the airfoil, and also on the suction side in the

~absence of separation, becomes:

24t6/X-=(C Mh/3r )sin (a)sin2 (_/2 ) [ + (hv*/U )2]'/

*: 1 _ 2)

/2w 2-c/2ir i+c/2w 2'
(F-/s), (w6/u) 1-(Us/U)-'

1-u /U[(w6/U )2 + (l+(hv./Uc)2)/b2 ]  0
s o

(7.3)

The principal difference between (7.1), (7.2) is the reduction

from quadratic to linear dependence of f2(W on ko . This implies

that the overall intensity of the trailing edge noise is propor-

411
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FIGURE 7. COORDINATES DEFINING THE RADIATION FROM AN AIRFOIL OF
'-a. NON-COMPACT CHORD.
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8. CONCLUSION

There are two principal components of the sound produced by

low Hach number turbulent flow over a beveled, or asymmetrically

rounded, trailing edge. These can be identified with hydro-

* acoustic sources of dipole type associated with the fluctuations

in the lift and with the finite thickness of the airfoil. The

influence of beveling on the lift dipole is significant only at

sufficiently high frequency that the trailing edge region of the

airfoil can be regarded as a straight-sided wedge over distances

of the order of the length scale of the turbulence. In that

case, the spectrum of the dipole radiation falls below that for a

trailing edge of zero included angle (i.e., for a thin plate
airfoil) by an amount which increases progressively with fre-

quency. The radiation generated by the thickness dipole is
absent in conventional treatments of trailing edge noise. For an

airfoil of compact chord its intensity varies approximately as

the cube of the included angle and linearly as the airfoil thick-

ness, and is generally negligible except possibly at low frequen-

cies, for trailing edges of large included angle, and in radia-

tion directions lying in the mean plane of the airfoil.
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